Tag Archives: air conditioner compressor

China supplier 48V DC Air Conditioner Compressor Rotary with Low Height Low Power Consumption for DC Solar Air Con wholesaler

Product Description

48V dc air conditioner compressor rotary with low height low power consumption for dc solar air con
Product Description

FS CHINAMFG DC  rotary inverter air conditioner  compressor is an electric compressor that is specifically designed to work with a 48V DC power source. This type of compressor is commonly used in off-grid or solar-powered air conditioning systems, as well as in hybrid or electric vehicles.

The 48V air conditioner compressor is known for its high efficiency and low power consumption, making it an ideal choice for applications where energy efficiency is a top priority. It typically uses a brushless DC motor, which helps to reduce noise and vibration during operation, and has a compact and lightweight design that makes it easy to install in a variety of settings.

One of the key advantages of the 48V air conditioner compressor is its ability to provide consistent cooling performance even in high-temperature environments. It can be used in a range of air conditioning systems, including split systems, rooftop units, and portable air conditioners.

Overall, the 48V air conditioner compressor is a reliable and efficient solution for cooling applications that require a low-power and high-performance compressor. It is a popular choice for those who are looking to reduce their energy costs and environmental impact, while still maintaining a comfortable indoor environment.

Name 48v 2000watt DCinverter rotary air conditioner compressor
Brand FS THERMO
Model WF130HD048
Voltage DC 48V
Refrigerant R134A
Net weight 7.1kg
Cooling capacity 1810WATT(AT 3600RPM)
Speed range 900~4200rpm
Controller Board Variable frequency controller
MOQ 1Piece
Certification ISO,CE
Payment T/T 30% deposit,70% balance before shipment
Packing Standard packing or according to client’s requirement
Transportation By sea/air or as request
Delivery port HangZhou PORT/ZheJiang  PORT
Delivery Time 15-20 days after receipt of T/T 30% deposit
Business Type Professional DC rotary compressor factory/manufacturer
Producttion  Capacity 30000 units per month
Place of Origin zHangZhoug China (Mainland)

 
production show 

 

SERIES MODLES

DC Model Power supply Mount Type Application Displacement ASHRAE  (7.2ºC) POWER
Cooling Capacity
cm3 W Btu/h W
FSQX14Z12  DC 12V vertical LBP/MBP/HBP 1.4 250 850 92
FSQX14Z48 DC 48V vertical LBP/MBP/HBP 1.4 252 853 93
FSQX19Z12 DC 12V vertical LBP/MBP/HBP 1.9 300 1571 130
FSQX19Z24 DC 24V vertical LBP/MBP/HBP 1.9 310 1057 118
FSQX19Z48 DC 48V vertical LBP/MBP/HBP 1.9 310 1057 118
FSQA571Z12 DC 12V vertical LBP/MBP/HBP 2.7 410 1382 145
FSQA571Z24 DC 24V vertical LBP/MBP/HBP 2.7 460 1570 195
FSQX325Z24 DC 24V vertical LBP/MBP/HBP 3.25 550 1875 212
FSQA038Z24 DC 24V Vertical MBP/HBP 3.8 635 2165 255
FSQX050Z48 DC  48V  vertical MBP/HBP 5.0  800 2728 307
FSQX075 DC48V/72V/96V Vertical  MBP/HBP 7.5  1050 3581 335
FSQX089Z48 DC48V vertical MBP/HBP 8.9 1500 5115 380
FSQX140Z24 DC24V Vertical  MBP/HBP 14.0  2045 7195 380
FSQX140Z48 DC48V Vertical MBP/HBP 14.0  2110 7195 640
FSQA120 DC48/72/96V Vertical MBP/HBP 12 1625 5542 525
FSQA036Z48 DC 48V vertical MBP/HBP 3.6 500 1705 164
FSQA073Z24 DC 24V vertical MBP/HBP 7.3 1571 3500 312
FSQA135Z24 DC 24 vertical MBP/HBP 13.5 1950 6650 965
FSQA058Z48 DC 48V Horizontal MBP/LBP 5.8 620 2115 204
FSQA088Z24 DC 24V vertical MBP/HBP 8.8 1270 4330 410
FSQA088Z48 DC 48V Horizontal MBP/LBP 8.8 850 3035 410
WF082VDA2 DC12V  vertical  MBP/HBP 8.2 1150 3922 360
WF132HD012 DC12V  Horizontal MBP/HBP 13.2 1850 6312 580
WR072ED012 DC12V  vertical MBP/HBP 7.2 2150 7332 650
WR132GD571 DC24V  vertical MBP/HBP 13.2  3571 10400 960
WF28016VD24 DC24V vertical MBP/HBP 18.0  2520 8593 788
WF28016HD24 DC 24V Horizontal MBP/HBP 18.0  2520 8593 788
FSQA150Z48 DC 48V Horizontal MBP/LBP 15 2080 7093 690
WF180HD48 DC 48V Horizontal MBP/HBP 18 2510 8550 770
WF180HD72 DC 72V Horizontal MBP/HBP 18 2510 8550 770
WF180HD312 DC 312V Horizontal MBP/HBP 18 2510 8550 770
WF280HD312 DC 312V Horizontal MBP/HBP 28 4000 13640 1200
WF120ED DC48/72 V/96v/312v Vertical MBP/HBP 12 1735 6000 525
WF140ED DC 48V vertical MBP/HBP 14 2050 7000 635
FSQX110Z48 DC48V Vertical MBP/HBP 11 3260 11117 845
WR180GD048 DC48V vertical MBP/HBP 18 5150 17561 1600

 

Main Features

1) With low noise and vibration, high efficiency and energy saving.

2) With strongly connection, good sealing, high level of protection. 

3) With mature manufacturing of double rotor and mass production

Applicaiton
Portable air conditioner , EV car air conditioner ,truck air conditioner , camper air conditioner   , RV air conditioner ,crane air conditioner,solar air conditioner , electronics  cooling system etc.

Package and shipping 

Sample order:
Each compressor was packaged in 1 carton box and non-fumigated wooden box.
Delivery time: Generally we have samples on stock. We can deliver as soon as receiving the payment.
Large order:
The compressors will be packaged in non-fumigated pallets.

Port:HangZhou or ZheJiang

Company Info
FS CHINAMFG is a HVAC&R CHINAMFG company who focus on the heating and cooling products designing, Production and marketing more than 15 years. We have serviced and cooperated with more than 100 customers in the global market.  Our main product is CHINAMFG heat exchanger, compressor, and integrated refrigeration unit, special Chiller unit and custom CHINAMFG solution.The products including the Cooling module for chamber, Liquid Chiller Unit for batter cooling , cooling compressors ,  We always providing and investing innovational HVAC&R technology to enhance the customer experience and help us become a better business partner to you.

FAQ

1. What is the MOQ?
The MOQ is 1 piece.
2. What is the delivery time?
10days after payment for sample order, and 25days for bulk order.
3. What is the shipping port?
HangZhou or ZheJiang port.
4. What is the payment method?
We can accept T/T, Western Union, Paypal, L/C, etc.
5. What is our main product?

• air conditioning compressor,220v,110v,100v ,50/60hz
• Mini DC 12V/24V/48V compressor
• DC 12V/24V/48V/72V/312V compressor
• Mini chillier module , Mini condensing unit
• spot cooling system
• Rotary compressor for industry cooling , Dehumidifyer , water gen.
• Refrigeration compressor & Condensing unit for commercial refrigeration & transport refrigeration

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Installation Type: Stationary Type
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China supplier 48V DC Air Conditioner Compressor Rotary with Low Height Low Power Consumption for DC Solar Air Con   wholesaler China supplier 48V DC Air Conditioner Compressor Rotary with Low Height Low Power Consumption for DC Solar Air Con   wholesaler
editor by CX 2024-02-17

China Custom Air Compressor Price List R407c Rr61ke-Tfd-Nn7 220V/380V Scroll Compressor for Air Conditioner wholesaler

Product Description

Model RR36KM-PFJ-NN1 RR48KM-PFJ-NN1 RR36KM-TFD-NN1 RR48KM-TFD-NN1 RR61KM-TFD-NN1 RR72KM-TFD-NN1
Motor Power 220-240V/50HZ/1ph 220-240V/50HZ/1ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph
Nominal Power(HP) 3 4 3 4 5 6
Displacement(m3/h) 8.1 11.4 8.1 11.4 14.4 17.2
Refrigerant R22 R22 R22 R22 R22 R22
Nominal Capacity(W) 8750 11800 8870 11850 14910 17600
Nominal Input Power(W) 2664 3600 2670 3600 4430 5190
COP(W/W) 3.18 3.25 3.28 3.27 3.36 3.39
Nominal Operating Current(A) 12.2 17.6 4.6 6.1 8.0 8.8
LRA(A) 83 121 33 57 61 75
MOC(A) 17.7 25.6 7.5 9.5 11.5 13.7
Fitting OD Size (Inch) Dis.Tube 1/2 1/2 1/2 1/2 1/2 1/2
Suc.Tube 7/8 7/8 7/8 7/8 7/8 7/8
Dimension (mm) (L)*(W)*(H) 244x244x405 240x240x436 244x244x405 240x240x436 240x240x456 240x240x456
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil 3GS 3GS 3GS 3GS 3GS 3GS
Lubrication Oil Initial Charge (L) 1.3 1.3 1.3 1.4 1.8 1.8
Lubrication Oil Recharge (L) 1.3 1.3 1.3 1.4 1.8 1.8
Max. Operating Pressures (MPa) High Pressure Side 3.0 3.0 3.0 3.0 3.0        4.3 3.0
Low Pressure Side 2.0 2.0 2.0 2.0 2.0 2.0
Weight (Kg) 30 36 30 36 40 41
Note: Evaporating Temperature 7.2°C, Condensing Temperature 54.4°C, Return Gas Temperature 18.3°C,Subcoolting 8,3°C
Model RR81KM-TFD-NN1 RR94KM-TFD-NN1 RR125KM-TFD-NN1 RR144KM-TFD-NN1 RR160KM-TFD-GN1 RR190KM-TFD-GN1
Motor Power 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph
Nominal Power(HP) 7 8 10 12 13 15
Displacement(m3/h) 18.8 22.1 29.1 33.2 36.3 43.3
Refrigerant R22 R22 R22 R22 R22 R22
Nominal Capacity(W) 19850 23200 30500 34950 37950 45450
Nominal Input Power(W) 5805 6700 9120 10150 11250 13550
COP(W/W) 3.42 3.43 3.43 3.47 3.35 3.31
Nominal Operating Current(A) 10.3 12.4 15.6 17.4 20.2 25.3
LRA(A) 116 119 125 154 174 174
MOC(A) 16.3 17.3 22.2 25.2 27.5 31.1
Fitting OD Size (Inch) Dis.Tube 1/2 1/2 7/8 7/8 7/8 7/8
Suc.Tube 7/8 7/8 1 3/8 1 3/8 1 3/8 1 3/8
Dimension (mm) (L)*(W)*(H) 240x240x461 260x280x495 260x280x551 260x280x551 260x280x570 260x280x570
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil 3GS 3GS 3GS 3GS 3GS 3GS
Lubrication Oil Initial Charge (L) 1.8 2.7 3.0 3.0 3.2 3.2
Lubrication Oil Recharge (L) 1.8 2.7 3.0 3.0 3.2 3.2
Max. Operating Pressures (MPa) High Pressure Side 3.0 3.0         4.3 3.0 3.0 3.0 3.0
Low Pressure Side 2.0 2.0 2.0 2.0 2.0 2.0
Weight (Kg) 41 58 63 63 67 67

Model RR36KE-PFJ-NN7 RR48KE-PFJ-NN7 RR36KM-TFD-NN7 RR48KE-TFD-NN7 RR61KE-TFD-NN7 RR72KE-TFD-NN7
Motor Power 220-240V/50HZ/1ph 220-240V/50HZ/1ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph
Nominal Power(HP) 3 4 3 4 5 6
Displacement(m3/h) 8.1 11.4 8.1 11.4 14.4 17.2
Refrigerant R407C R407C R407C R407C R407C R407C
Nominal Capacity(W) 8780 11867 8450 11500 15100 16500
Nominal Input Power(W) 2636 3560 2630 3550 4750 5600
COP(W/W) 3.03 3.06 3.13 3.16 3.20 3.20
Nominal Operating Current(A) 11.9 17.7 4.9 6.4 8.2 9.2
LRA(A) 83 121 33 57 61 75
MOC(A) 18.3 26.7 7.5 9.7 11.7 13.9
Fitting OD Size (Inch) Dis.Tube 1/2 1/2 1/2 1/2 1/2 1/2
Suc.Tube 7/8 7/8 7/8 7/8 7/8 7/8
Dimension (mm) (L)*(W)*(H) 244x244x405 240x240x436 244x244x405 240x240x436 240x240x456 240x240x456
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil POE POE POE POE POE POE
Lubrication Oil Initial Charge (L) 1.3 1.3 1.3 1.4 1.8 1.8
Lubrication Oil Recharge (L) 1.3 1.3 1.3 1.4 1.8 1.8
Max. Operating Pressures (MPa) High Pressure Side 3.0 3.0 3.0 3.0 3.0 3.0
Low Pressure Side 2.0 2.0 2.0 2.0 2.0
Weight (Kg) 30 36 30 36 40 41
Note: Evaporating Temperature 7.2°C, Condensing Temperature 54.4°C, Return Gas Temperature 18.3°C,Subcoolting 8,3°C
Model RR81KE-TFD-NN7 RR94KE-TFD-NN7 RR125KE-TFD-NN7 RR144KE-TFD-NN7 RR160KE-TFD-GN7 RR190KE-TFD-GN7
Motor Power 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph 380~420V/50Hz/3ph
Nominal Power(HP) 7 8 10 12 13 15
Displacement(m3/h) 18.8 22.1 29.1 33.2 36.3 43.3
Refrigerant R407C R407C R407C R407C R407C R407C
Nominal Capacity(W) 18500 22900 29950 34450 37450 43950
Nominal Input Power(W) 5950 6930 8930 15710 11400 13580
COP(W/W) 3.16 3.31 3.38 3.37 3.26 3.20
Nominal Operating Current(A) 10.8 12.8 15.8 17.6 20.5 26.3
LRA(A) 116 119 125 154 174 174
MOC(A) 16.3 17.5 22.5 25.3 27.8 31.4
Fitting OD Size (Inch) Dis.Tube 1/2 1/2 7/8 7/8 7/8 7/8
Suc.Tube 7/8 7/8 1 3/8 1 3/8 1 3/8 1 3/8
Dimension (mm) (L)*(W)*(H) 240x240x461 260x280x495 260x280x551 260x280x551 260x280x570 260x280x570
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil POE POE POE POE POE POE
Lubrication Oil Initial Charge (L) 1.8 1.8 3.0 3.0 3.2 3.2
Lubrication Oil Recharge (L) 1.8 1.8 3.0 3.0 3.2 3.2
Max. Operating Pressures (MPa) High Pressure Side 3.0 3.0 3.0 3.0 3.0 3.0
Low Pressure Side 2.0 2.0 2.0 2.0 2.0 2.0
Weight (Kg) 41 58 63 63 67 67

Model RB15KM-PFJ-GN1 RB19KM-PFJ-GN1 RB22KM/E-PFJ-GN1 RB15KM-TFD-GN1 RB19KM-TFD-GN1 RB22KM/E-TFD-GN1 RB29KM/E-TFD-GN1 RB40KM/E-TFD-GN1
Motor Power 220~240V/50Hz/1ph 380~420V/50Hz/3ph
Nominal Power(HP) 2 2.5 3 2 2.5 3 4 5
Displacement(m3/h) 5.7 6.6 8.4 5.7 6.8 8.4 11.6 14.7
Refrigerant R22 R22 R22 R22 R22 R22 R22 R22
Nominal Capacity(W) 3407 3850 4700 3400 3840 4650 6700 7850
Nominal Input Power(W) 1370 1510 1950 1365 1480 1940 2560 3250
COP(W/W) 2.48 2.55 2.41 2.49 2.59 2.39 2.61 2.41
Nominal Operating Current(A) 11.2 12.5 14.6 4.1 4.4 5.6 7.1 9.3
LRA(A) 58 61 77 26 32 46 60 66
MOC(A) 15 18 21 5.8 6 8 10 13
Fitting OD Size (Inch) Dis. Tube 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Suc. Tube 3/4 3/4 3/4 3/4 3/4 3/4 7/8 7/8
Dimension (mm) (L)*(W)*(H) 240x240x382 240x240x382 244x244x405 240x240x382 240x240x382 244x244x405 240x240x436 240x240x456
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil 3GS 3GS 3GS 3GS 3GS 3GS 3GS 3GS
Lubrication Oil Initial Charge (L) 1.22 1.35 1.43 1.22 1.35 1.43 1.35 2.03
Lubrication Oil Recharge (L) 1.22 1.35 1.43 1.22 1.35 1.43 1.35 2.03
Max. Operating Pressures (MPa) High Pressure Side 3 3 3 3 3 3 3 3
Low Pressure Side 2 2 2 2 2 2 2 2
Weight(Kg) 23.5 24.7 26.9 23.5 24.7 26.9 33.6 38.4
Crankcase Heater (W) 70 70 70 70 70 70 70 70

Model RB45KM/E-TFD-GN1 RB48KM/E-TFD-GN1 RB58KM/E-TFD-GN1 RB76KM/E-TFD-GN1 RB89KM/E-TFD-GN1 RB96KM/E-TFD-GN1 RB110KM/E-TFD-GN1
Motor Power 380~420V/50Hz/3ph
Nominal Power(HP) 6 7 8 10 12 13 15
Displacement(m3/h) 17.7 19.4 22.9 29.5 34.3 36.3 42.8
Refrigerant R22 R22 R22 R22 R22 R22 R22
Nominal Capacity(W) 8900 9550 11850 17800 18900 21800 24600
Nominal Input Power(W) 3730 4100 4850 6350 7200 8250 9700
COP(W/W) 2.38 2.32 2.33 2.81 2.62 2.64 2.53
Nominal Operating Current(A) 11.4 12.1 15.7 19.1 21.2 22.9 26.6
LRA(A) 81 110 117 122 129 149 188
MOC(A) 16 17 22 27 30 31 37
Fitting OD Size (Inch) Dis. Tube 1/2 3/4 7/8 7/8 7/8 7/8 7/8
Suc. Tube 7/8 7/8 1-1/8 1-3/8 1-3/8 1-3/8 1-3/8
Dimension (mm) (L)*(W)*(H) 240x240x456 240x240x461 260x280x495 260x280x551 260x280x551 260x280x570 260x280x570
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil 3GS 3GS 3GS 3GS 3GS 3GS 3GS
Lubrication Oil Initial Charge (L) 1.92 1.78 2.49 3.23 3.23 3.25 3.25
Lubrication Oil Recharge (L) 1.92 1.78 2.49 3.23 3.23 3.25 3.25
Max. Operating Pressures (MPa) High Pressure Side 3 3 3 3 3 3 3
Low Pressure Side 2 2 2 2 2 2 2
Weight(Kg) 40.5 40.9 58.1 62.5 62.7 62.8 67.1
Crankcase Heater (W) 70 70 90 90 90 90 90

 Model RB15KM-PFJ-GN2 RB19KM-PFJ-GN2 RB22KM/E-PFJ-GN2 RB15KM-TFD-GN2 RB19KM-TFD-GN2 RB22KM/E-TFD-GN2 RB29KM/E-TFD-GN2 RB40KM/E-TFD-GN2
Motor Power 220~240V/50Hz/1ph 380~420V/50Hz/3ph
Nominal Power(HP) 2 2.5 3 2 2.5 3 4 5
Displacement(m3/h) 5.7 6.6 8.4 5.7 6.8 8.4 11.6 14.7
Refrigerant R404A R404A R404A R404A R404A R404A R404A R404A
Nominal Capacity(W) 3200 3600 4550 3200 3550 4500 6500 7560
Nominal Input Power(W) 1542 1699 2350 1540 1690 2330 2950 3550
COP(W/W) 2.07 2.11 1.93 2.07 2.1 1.93 2.2 2.12
Nominal Operating Current(A) 11.4 13.1 14.9 4.2 4.5 5.8 7.3 9.4
LRA(A) 58 61 77 26 32 46 60 66
MOC(A) 15 18 22 5.8 6 8 10 13
Fitting OD Size (Inch) Dis. Tube 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Suc. Tube 3/4 3/4 3/4 3/4 3/4 3/4 7/8 7/8
Dimension (mm) (L)*(W)*(H) 240x240x382 240x240x382 244x244x405 240x240x382 240x240x382 244x244x405 240x240x436 240x240x456
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil POE POE POE POE POE POE POE POE
Lubrication Oil Initial Charge (L) 1.22 1.35 1.43 1.22 1.35 1.43 1.35 2.03
Lubrication Oil Recharge (L) 1.22 1.35 1.43 1.22 1.35 1.43 1.35 2.03
Max. Operating Pressures (MPa) High Pressure Side 3 3 3 3 3 3 3 3
Low Pressure Side 2 2 2 2 2 2 2 2
Weight(Kg) 23.5 24.7 26.9 23.5 24.7 26.9 33.6 38.4
Crankcase Heater (W) 70 70 70 70 70 70 70 70

Model RB45KM/E-TFD-GN2 RB48KM/E-TFD-GN2 RB58KM/E-TFD RB76KM/E-TFD RB89KM/E-TFD RB96KM/E-TFD RB110KM/E-TFD
Motor Power 380~420V/50Hz/3ph
Nominal Power(HP) 6 7 8 10 12 13 15
Displacement(m3/h) 17.7 19.4 22.9 29.5 34.3 36.3 42.8
Refrigerant R404A R404A R404A R404A R404A R404A R404A
Nominal Capacity(W) 8600 9500 11800 17200 18450 21300 23000
Nominal Input Power(W) 3950 4550 5600 7450 7495 9500 11310
COP(W/W) 2.17 2.08 2.1 2.3 2.46 2.24 2.03
Nominal Operating Current(A) 11.6 12.3 16 19.5 21.7 23.7 27.2
LRA(A) 81 110 117 122 129 149 188
MOC(A) 16 17 22 27 30 31 37
Fitting OD Size (Inch) Dis. Tube 1/2 3/4 7/8 7/8 7/8 7/8 7/8
Suc. Tube 7/8 1-1/8 1-3/8 1-3/8 1-3/8 1-3/8
Dimension (mm) (L)*(W)*(H) 240x240x456 240x240x461 260x280x495 260x280x551 260x280x551 260x280x570 260x280x570
Mounting Dimension (Dia.)(mm) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5) 190X190(Ø8.5)
Lubrication Oil POE POE POE POE POE POE POE
Lubrication Oil Initial Charge (L) 1.92 1.78 2.49 3.23 3.23 3.25 3.25
Lubrication Oil Recharge (L) 1.92 1.78 2.49 3.23 3.23 3.25 3.25
Max. Operating Pressures (MPa) High Pressure Side 3 3 3 3 3 3 3
Low Pressure Side 2 2 2 2 2 2 2
Weight(Kg) 40.5 40.9 58.1 62.5 62.7 62.8 67.1
Crankcase Heater (W) 70 70 90 90 90 90 90

After-sales Service: Standard
Warranty: 1 Year
Lubrication Style: Lubricated
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China Custom Air Compressor Price List R407c Rr61ke-Tfd-Nn7 220V/380V Scroll Compressor for Air Conditioner   wholesaler China Custom Air Compressor Price List R407c Rr61ke-Tfd-Nn7 220V/380V Scroll Compressor for Air Conditioner   wholesaler
editor by CX 2023-11-09