Product Description
Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!
Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP
Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug
Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.
Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models
SPECIFICATION
| MODEL | LG-20Z-10 |
| Ambient Temperature | -5ºC to +45 ºC |
| Max Pressure (bar) | 10 |
| Air Delivery (m3/min) | 2.1 |
| Compression Stage | Single Stage Compression |
| Cooling Method | Air Cooled |
| Discharge Temperature (ºC) | ≤ 75ºC |
| Oil Cotent (ppm) | ≤3 |
| Transmission Method | Direct Driven |
| Sound Level dB(A) | 66±3 |
| Lubricating Oil Amount | 7.5L |
| Motor Power | 15KW/20HP |
| Motor Level Of Protection | IP55 |
| Voltage | 380V/3ph/50Hz |
| Dimensions (mm) | 1060×720×1005(L*W*H) |
| Weight | 320KG |
| Discharge Outlet Thread | 3/4” |
| After-sales Service: | Video, Live, Site Support |
|---|---|
| Warranty: | 2-Year-Warranty |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Installation Type: | Stationary Type |
| Samples: |
US$ 900/set
1 set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-11-11
China Custom Hot Product Good Quality All in One 7.5kw 11kw 15kw 22kw 8 10 16 Bar AC Power Electric Oilless Industrial Integrated Screw Air Laser Cutting CHINAMFG air compressor for sale
Product Description
Product Description
product introduction
Model:OPA-30PV/16
Power:22kw
Horsepower:30hp
Color:Blue and white
Specification:1850*870*1850mm
Weight:530kg
Air tank:500L
System language:Can be customized
Detailed Photos
High reliability
High reliability, few parts and nowearing parts, so it runs reliably andhas a long service life. Generally, thedesign life of the main screw machiHangZhouad is 15-20 years.
High reliability
High reliability, few parts and nowearing parts, so it runs reliably andhas a long service life. Generally, thedesign life of the main screw machiHangZhouad is 15-20 years.
Certifications
OPPAIR’s quality meets EU standards and has CE quality inspection certificate.
The testing agency is a recognized certification agency in Italy. After certification at our factory site, strict machine testing and CE certificate are issued. Authority, more trustworthy.
The following picture is the certification certificate issued by SGS company after the on-site certification of our company. Field Certification CHINAMFG is a trusted manufacturer.
Packaging & Shipping
Our company cleans the inside and outside of the product before delivery, and then covers it with multi-layer industrial stretch film, bubble film, anti-collision column, and finally loads it with wooden pallets or wooden boxes.
Product Parameters
| 4 in 1 High Pressure Series | |||||||
| Model | OPA-15F/16 | OPA-20F/16 | OPA-30F/16 | OPA-15PV/16 | OPA-20PV/16 | OPA-30PV/16 | |
| Power(kw) | 11 | 15 | 22 | 11 | 15 | 22 | |
| Horsepower(hp) | 15 | 20 | 30 | 15 | 20 | 30 | |
| Air displacement/ Working pressure (m³/min. / Bar) |
1.0/16 | 1.2/16 | 2.0/16 | 1.0/16 | 1.2/16 | 2.0/16 | |
| Air Tank(L) | 380/500 | 380/500 | 500 | 380/500 | 380/500 | 500 | |
| Type | Fixed Speed | Fixed Speed | Fixed Speed | PM VSD | PM VSD | PM VSD | |
| Air out let diameter |
DN20 | DN20 | DN20 | DN20 | DN20 | DN20 | |
| Driven method | Direct driven | Direct driven | Direct driven | Direct driven | Direct driven | Direct driven | |
| Start method | Υ-Δ | Υ-Δ | Υ-Δ | PM VSD | |||
| Length (mm) | 1820 | 1820 | 1850 | 1820 | 1820 | 1850 | |
| Width (mm) | 760 | 760 | 870 | 760 | 760 | 870 | |
| Height (mm) | 1800 | 1800 | 1850 | 1800 | 1800 | 1850 | |
| Weight (kg) | 420 | 420 | 530 | 420 | 420 | 530 | |
Company Profile
ZheJiang CHINAMFG Machinery Manufacturing Co.,Ld base in HangZhou ZheJiang , anAAA-level enterprise with high-quality service and integrity in China.
OPPAIR as 1 of the world’s largest air compressor system suppliers, currently developing the following products: Fixed-speed Air Compressors, Permanent Magnet VariableFrequency Air Compressors, Permanent Magnet Variable Frequency Two-stage Air Compressors, 4-IN-1 Air Compressors (lntegrated Air Compressor for Laser Cutting Machine)Supercharger, CHINAMFG Air Dryer, Adsorption Dryer, Air Storage Tank and related accessories.
FAQ
Q1: Why do customers choose us?
A: ZheJiang CHINAMFG Machinery Manufacturing Co., Ltd. has a history of 16 years. We specialize in the production of screw air compressors. We warmly welcome your small trial orders for quality or market testing, and we offer special services.
Q2: Are you a manufacturer or a trading company?
A: We are a professional manufacturer with a large modern factory in HangZhou, China. OEM and ODM services can be accepted.
Q3: What is your delivery time?
A: 380V 50HZ We can ship within 10 days. It takes 20 days for other voltages, if you need to rush, please contact our sales staff in advance.
Q4: How long is the warranty period of your air compressor?
A: One year for the whole machine and 2 years for the screw host, excluding consumables.
Q5: How long can your air compressor last?
A: More than 10 years under normal use.
Q6: What are the payment terms?
A: T/T, L/C, Western Union, Credit Card, etc. We can also accept USD, RMB, EUR and other currencies.
Q7: Will you provide some spare parts for the machine?
A: Yes, of course.
Q8: Can you accept OEM orders?
A: Yes, with a professional design team, OEM orders are very welcome.
Q9: What kind of trade terms can you accept?
A: Available trade terms: FOB, CIF, EXW, etc.
Q10: How about the product packaging?
A: We strictly pack our products in standard airworthy boxes.
| After-sales Service: | 1year |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Samples: |
US$ 3755/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-11-10
China factory 11kw 15HP Intergrated High Pressure Screw Air CHINAMFG with Tank, Line Filters for Laser Cutting Machine air compressor oil
Product Description
Product Description
Detailed Photos
Product Parameters
| Model | KAPM-15A-16 |
| Power(KW) | 11KW |
| Pressure(bar) | 16 |
| Volume(m³/min) | 0.9 |
| Pipe Diameter | G3/4 |
| Weight(kg) | 330/570 |
| Dimension(mm) | 1800*750*1770(combined type) |
Certifications
Packaging & Shipping
Installation Instructions
Company Profile
ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.
The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.
Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.
Eachproduct of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.
FAQ
Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.
Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.
Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.
Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.
Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.
Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.
Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries. Such as India, UAE, South Africa, Saudi Arabia, Iraq, Pakistan, etc.
| After-sales Service: | Online Technology Support |
|---|---|
| Warranty: | 12months |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 2400/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-11-09
China Custom Ie4 Pm Motor 110kw 150HP VSD Screw Air Compressor air compressor for car
Product Description
PM VSD TYPE SCREW AIR COMPRESSOR
* High efficiency power-saving
* Permanent magnet motor
* Frequency Inverter
|
Model |
Power KW |
Power HP |
Air flow L/min |
Pressure bar |
Drive Mode |
|
SA-10E |
7.5 |
10 |
1.2/1.1/0.95/0.8 |
7/8/10/12 |
Direct |
| SA-15E |
11 |
15 |
1.65/1.5/1.3/1.1 |
7/8/10/12 |
Direct |
|
SA-20E |
15 |
20 |
2.5/2.3/2.1/1.72 |
7/8/10/12 |
Direct |
|
SA-25E |
18.5 |
25 |
3.2/3.0/2.7/2.4 |
7/8/10/12 |
Direct |
|
SA-30E |
22 |
30 |
3.8/3.6/3.2/2.7 |
7/8/10/12 |
Direct |
|
SA-40E |
30 |
40 |
5.3/5.0/4.5/4.0 |
7/8/10/12 |
Direct |
|
SA-50E |
37 |
50 |
6.8/6.2/5.6/5.0 |
7/8/10/12 |
Direct |
|
SA-75V |
55 |
75 |
10/9.6/8.5/7.6 |
7/8/10/12 |
Direct |
|
SA-100V |
75 |
100 |
13.4/12.6/11.2/10.0 |
7/8/10/12 |
Direct |
|
SA-150V |
110 |
150 |
21/19.8/17.4/14.8 |
7/8/10/12 |
Direct |
|
SA-175V |
132 |
175 |
24.5/23.2/20.5/17.4 |
7/8/10/12 |
Direct |
FAQ:
Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.
Q2: How about the warranty terms of your machine?
A2: One year for the whole machine and 2 years for screw air end, except consumble spare parts.
Q3: Could you provide some spare parts of the machines?
A3: Yes, we can offer.
Q4: What about product package?
A4: We will pack the products strictly with standard wooden carton.
Q5: Can you customized the voltage of products?
A5: Yes, the voltage can be customized according to your requirement. Like 380V/60HZ, 415V/50HZ, 220V/60HZ and so on.
Q6: Can you provide samples?
A6: Yes, we cam provide samples.
Q7: How long will you take to arrange production?
A7: Regular model within 7-15 days. Customized model within 25-30 days.
Q8: How about your customer service?
A8: 24 hours on-line service available. 48 hours problem solved promise.
Q9: Which payment term can you accept?
A9: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q10: Which trade term can you accept?
A10: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.
| After-sales Service: | Online Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Samples: |
US$ 11000/unit
1 unit(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-11-08
China Best Sales 8 Bar 15kw 2.1m3/Min Rotary Air Compessor Screw Air Compressor for for Food & Beverage Factory air compressor parts
Product Description
| Item No.: | HR-15 |
| Ambient temperature: | -5~45 ºC |
| Cooling method: | Air Cooling |
| Oil content of gas : | ≤0.01mm |
| Noise: | 63±2 dB |
| Inlet /outlet size : | G ¾ |
| Overall Size: | 1040*750*1000mm |
Product descriptions
Company Profile
Certifications
Packing & Delivery
FAQ
1. Why do customers choose us?
HIROSS INDUSTRY MACHINERY CO.,ltd have more than 15 years experience in designing,researching and
developing and manufacturing the purify,environment friendly,energy saving equipment.Product various from compressed air dryer,dehumidifier,filter,chiller,to accessories,etc.
2.Are you a manufacturer or a trading company?
We are a professional manufacturer in HangZhou, China has a large modern factory, with a professional design team. Two can accept OEM & ODM services.
3.Where is your factory? How can I visit it? Our factory is located in HangZhou City, ZheJiang Province, China. We can pick you up from HangZhou, about 1 hour from HangZhou airport to our factory. Welcome to our company!
4.What is your delivery time?
We can deliver within 15 days. For urgent orders, please contact our sales staff in advance.
5. How long is your air compressor warranty period?
We can provide some spare parts for the whole machine for 1 year Quality is everything. We attach great importance to quality control from the beginning to the end. Our factory has passed ISO9001 certification and CE certification.
6.How long can your air compressor last?
Usually more than 10 years.
7.What are the terms of payment?
T / T, L / C, D / P, Western Union, credit card and so on. We can accept US dollar, RMB, Euro yuan and other currencies.
8. How is your customer service? 24-hour online
service. 48 hour problem solving commitment.
9.How about your after-sales service?
(1) To provide customers with online guidance for installation and debugging.
(2) Trained engineers can serve overseas.
(3) Provide global agency and after-sales service.
| After-sales Service: | Online Guidance |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Samples: |
US$ 1280/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-11-07
China Professional Good Technology 23bar Screw Air Compressor for Military Use air compressor for sale
Product Description
Product Description
Application
Diesel mobile screw air compressor is special designed for water well and geothermal well drilling, which is widely used in highway, railway, mining, water conservancy, shipbuilding, urban construction, energy, military and other industries.
Features
1. Main engine: large-diameter rotor design, the main engine and the diesel engine are directly connected through a highly elastic coupling, and there is no speed-increasing gear in the middle between them engine. The main engine rotates at the same speed as the diesel engine, with higher efficiency, better reliability and longer life.
2. Diesel engine: Cummins, CHINAMFG and other famous domestic and foreign diesel engines are selected, which meet the national II emission requirements. With strong power, low fuel consumption, and nationwide after-sales service system, users can get rapid and comprehensive services.
3. The air volume control system is simple and reliable. According to the size of the air volume, the air intake volume is automatically adjusted from 0 to 100%, and the diesel throttle is automatically adjusted at the same time, which greatly saves diesel oil.
4. The microcomputer intelligently monitors air compressor exhaust pressure, exhaust temperature, diesel engine speed, oil pressure, water temperature, fuel tank level and other operating parameters.
5. Multi-stage air filter, suitable for dusty working environment. Multi-stage fuel filter, suitable for the current status of domestic oil quality. Oversized oil-water cooler, suitable for high temperature and plateau environments.
6. Spacious maintenance and repair door, all parts needed to be maintained are within easy reach. The maintenance of air filters, oil filters, fuel tanks, batteries and oil coolers is easy and convenient, reducing downtime.
7. Easy to move, it can still move flexibly under the harsh terrain conditions. Each compressor is equipped with lifting rings for safe and convenient lifting and transportation.
Product Parameters
| Model | HF29/23(K) |
| Air displacement | 29m³/min |
| Air pressure | 23bar |
| Engine model | YC6ML400L-K30 |
| Rotation speed | 2000r/min |
| Power | 295kW |
| Dimension | 3500*1950*2030mm |
| Weight | 4850kg |
Working Site
Company Profile
FAQ
1.Are you trading company or manufacturer?
We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.
2. Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.
3.How about your machine quality?
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.
4. Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.
5. What about the qaulity warranty?
We offer one-year quality warranty for machines’ main body.
6. How long can you deliver the machine?
Generally, we can deliver the machine in 7 days.
| After-sales Service: | Online Support, Field Maintenance |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 15000/Set
1 Set(Min.Order) | |
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2023-11-07
China Custom 700cfm and 18bar Diesel Screw Air Compressor for Mining /Water Well air compressor oil
Product Description
HG700-18C Wholesale High Pressure Portable Diesel Compressor
Portable Screw Diesel Air Compressor widely applied to hydropower, railway, ship repairing, mining, highway, spray, oil and gas field, water well drilling rig, municipal construction, etc.
Details Feature for HG700-18C Diesel Trailer Mounted Screw Air Compressor
1. Most advanced air end:Handbell from ZheJiang technology.
2. Authorative of the engine.
3. Wide open gull-wing door:
4. MANN Brand Air filter,oil filter,air-oil separator,three stage air filter ensure the air clean.
5. Electricity and pannel instrument system:
6. CHINAMFG undercarriage
7. High efficient & economic adjustment system.
8. Compact structure design,anti-corrosion,and light-weight.
Specification for Wholesale High Pressure Portable Diesel Compressor
|
Model |
HG700-18C |
|
Air delivery (m3/min) |
18 |
|
Working pressure (MPa) |
18 |
|
Compression stage |
Single stage |
|
Air tank volume(L) |
130 |
|
Screw oil volume(L) |
80 |
|
Engine brand |
|
|
Engine model |
6CTA8.3-C260 |
|
Number of cylinders |
6 |
|
Power (KW) |
194 |
|
Rotation speed (r/min) |
1900 |
|
Idling speed(r/min) |
1400 |
|
Engine (lubricating) oil(L) |
24 |
|
Coolant volume(L) |
60 |
|
Fuel tank volume(L) |
350 |
|
Battery model |
6-QW-165MF*2 |
|
Air outlets |
1-G2″,1-G1″ |
|
Engine-Compressor |
Coaxial direct coupled |
|
Dimension(L*W*H)mm |
4600*1980*2210 |
|
Weight(kg) |
3280 |
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-11-03
China OEM CHINAMFG Brand S95t 29/24 Screw Air Compressors for Bore Hole and Water Well 12v air compressor
Product Description
1. ZEGA air compressors is relatively affordable and suitable for mid to low end users.
2. Excellent performance in energy conservation, with extremely high stability and reliability.
3. Maintenance is relatively simple, and the maintenance guarantee system is complete, with high quality after-sales service.
Detailed Photos
ZEGA screw air compressors have the advantages of high efficiency, stability, and durability, and are widely used in factories, car repair shops, construction sites, and other fields
Product Parameters
| Model | Rated FAD | Rated Pressure | Engine | Air End | Weight | Dimensions |
| S60T | 18 m3/min | 18 bar | Yuchai /162kW |
Two Stage Compre -ssion |
3050KG | 3220x1670x1950mm |
| S85T | 24 m3/min | 22 bar | Yuchai / 228 kW |
3450KG | 3560×1830×2100 mm | |
| S95T | 29 m3/min | 24 bar | Yuchai /295kW |
4300KG | 3950×2000×2550 mm | |
| S100T | 31 m3/min | 25 bar | Xichai / 309 kW |
4550KG | 3950×2000×2550 mm | |
| S125D | 36 m3/min | 30 bar | Cummins /410kW |
5500KG | 4220×2000×2300 mm |
FAQ
1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.
2.How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.
3.How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 25-30 days.
4. What’s your terms of payment?
T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
| After-sales Service: | Online Technical Services |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-10-31
China factory CHINAMFG Aircompressors Low Pressure Industrial Screw Air Compressor air compressor for sale
Product Description
Product Description
Product Name:Direct Driven Energy Saving PM VSD Screw Air Compressor
Power: 11KW 15HP
Pressure: 8bar
Air Flow: 1.7m3/min
Motor: Permanent Magent IP23 motor
Air End: CHINAMFG Brand
Noise: 70±2dBA
Size: 1120*750*980mm
Weight: 290kg
Detailed Photos
Product Parameters
| Model | Pressure | Air Flow | Power | Noise | Air Outlet Size | Weight | Dimensions |
| GTA-5.5PM | 8bar/116psi | 0.6m3/min | 4kw/5.5hp | 63 | G 3/4 | 110 | 900*600*850 |
| GTA-7.5PM | 8bar/116psi | 0.85m3/min | 5.5kw/7.5hp | 68 | G 3/4 | 120 | 900*600*850 |
| GTA-10PM | 8bar/116psi | 1.1m3/min | 7.5kw/10hp | 68 | G 3/4 | 120 | 900*600*850 |
| GTA-15PM | 8bar/116psi | 1.8m3/min | 11kw/15hp | 70 | G 1 | 200 | 1000*700*1000 |
| GTA-20PM | 8bar/116psi | 2.3m3/min | 15kw/20hp | 70 | G 1 | 200 | 1000*700*1000 |
| GTA-25PM | 8bar/116psi | 2.9m3/min | 18.5kw/25hp | 72 | G 1 | 300 | 1300*790*1150 |
| GTA-30PM | 8bar/116psi | 3.3m3/min | 22kw/30hp | 72 | G 1 | 300 | 1300*790*1150 |
| GTA-40PM | 8bar/116psi | 4.7m3/min | 30kw/40hp | 72 | G 1 1/2 | 320 | 1300*790*1150 |
| GTA-50PM | 8bar/116psi | 6.2m3/min | 37kw/50hp | 72 | G 1 1/2 | 460 | 1400*950*1310 |
| GTA-60PM | 8bar/116psi | 6.5m3/min | 45kw/60hp | 72 | G1 1/2 | 600 | 1400*950*1310 |
Our Advantages
Company Profile
FAQ
Q1: Warranty terms of your machine?
A1: One year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 2000 units per month.
| After-sales Service: | Spare Parts |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-10-30
China Standard 250 Cfm Energy Saving Direct Driven Screw Air Compressor air compressor for sale
Product Description
0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages
1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
6.Smart touch screen design and 0 pressure drop design
7.Higher efficiency cooling system and electrical motor
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.
Technical Parameters Of Energy Saving Rotary Screw Air Compressor
| Model | Maxinmum working | Capacity(FAD)* | Installed motor power | Driving mode& | Noise | Dimensions(mm) | Weight | Air outlet | |||||||
| pressure | 50 HZ | 60 HZ | Cooling method | level** | pipe diameter | ||||||||||
| bar(g) | psig | m3/min | cfm | m3/min | cfm | kw | hp | dB(A) | L | W | H | kg | |||
| DA-5 | 7.5 | 109 | 0.80 | 28 | 0.80 | 28 | 5.5 | 7.5 | Belt Driven | 75 | 900 | 600 | 860 | 315 | G3/4″ |
| 8.5 | 123 | 0.78 | 28 | 0.78 | 28 | 5.5 | 7.5 | Air Cooling | 75 | 900 | 600 | 860 | |||
| DA-7 | 7.5 | 109 | 1.09 | 39 | 1.09 | 39 | 7.5 | 10 | 75 | 900 | 600 | 860 | 315 | G3/4″ | |
| 8.5 | 123 | 1.07 | 38 | 1.07 | 38 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 10.5 | 152 | 0.92 | 32 | 0.91 | 32 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 13.0 | 189 | 0.73 | 26 | 0.72 | 26 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| DA-11 | 7.5 | 109 | 1.66 | 59 | 1.66 | 59 | 11 | 15 | 75 | 1230 | 650 | 900 | 324 | G3/4″ | |
| 8.5 | 123 | 1.64 | 58 | 1.64 | 58 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 10.5 | 152 | 1.45 | 51 | 1.45 | 51 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 13.0 | 189 | 1.13 | 40 | 1.12 | 40 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| DA-15 | 7.5 | 109 | 2.54 | 90 | 2.53 | 89 | 15 | 20 | Direct Driven | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ |
| 8.5 | 123 | 2.51 | 88 | 2.50 | 88 | 15 | 20 | Air Cooling | 75 | 1465 | 990 | 1345 | |||
| 10.5 | 152 | 1.97 | 70 | 1.86 | 66 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 1.83 | 65 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| DA-18 | 7.5 | 109 | 3.04 | 107 | 3.65 | 129 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | |
| 8.5 | 123 | 3.03 | 107 | 3.63 | 128 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 2.36 | 83 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| DA-22 | 7.5 | 109 | 3.57 | 126 | 3.65 | 129 | 22 | 30 | 75 | 1465 | 990 | 1345 | 477 | G1-1/4″ | |
| 8.5 | 123 | 3.55 | 125 | 3.63 | 128 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 2.97 | 105 | 2.36 | 83 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| DA-30 | 7.5 | 109 | 5.28 | 187 | 4.49 | 159 | 30 | 40 | 85 | 1600 | 1250 | 1550 | 682 | G1-1/2″ | |
| 8.5 | 123 | 5.26 | 186 | 4.48 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 3.45 | 122 | 3.58 | 126 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| DA-37 | 7.5 | 109 | 6.54 | 231 | 6.33 | 224 | 37 | 50 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 6.52 | 230 | 6.30 | 222 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 5.16 | 182 | 4.43 | 156 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| DA-45 | 7.5 | 109 | 7.67 | 271 | 7.79 | 275 | 45 | 60 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 7.62 | 269 | 7.76 | 574 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 6.46 | 228 | 6.24 | 220 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 6.41 | 226 | 4.44 | 157 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| DA-55 | 7.5 | 109 | 9.76 | 345 | 9.14 | 323 | 55 | 75 | 85 | 1876 | 1326 | 1700 | 1310 | G2″ | |
| 8.5 | 123 | 9.67 | 342 | 9.06 | 320 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 7.53 | 266 | 7.74 | 273 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 7.40 | 261 | 6.30 | 222 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| DA-75 | 7.5 | 109 | 14.21 | 502 | 11.72 | 414 | 75 | 100 | 85 | 1876 | 1326 | 1700 | 1325 | G2″ | |
| 8.5 | 123 | 12.55 | 443 | 11.63 | 411 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 9.51 | 336 | 11.43 | 404 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 9.23 | 326 | 8.75 | 309 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| DA-90(W) | 7.5 | 109 | 16.62 | 587 | 17.01 | 601 | 90 | 120 | Direct Driven | 72 | 2450 | 1800 | 1700 | 2450 | DN80 |
| 8.5 | 123 | 16.37 | 578 | 16.82 | 594 | 90 | 120 | Air Cooling Or | 72 | 2450 | 1800 | 1700 | |||
| 10.5 | 152 | 14.21 | 502 | 14.87 | 525 | 90 | 120 | Water Cooling | 72 | 2450 | 1800 | 1700 | |||
| 13.0 | 189 | 11.77 | 416 | 11.27 | 398 | 90 | 120 | 72 | 2450 | 1800 | 1700 | ||||
| DA-110(W) | 7.5 | 109 | 20.13 | 711 | 19.10 | 674 | 110 | 150 | 72 | 2450 | 1800 | 1700 | 2500 | DN80 | |
| 8.5 | 123 | 20.05 | 708 | 19.06 | 673 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 16.33 | 576 | 17.01 | 601 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 14.11 | 498 | 14.68 | 518 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| DA-132(W) | 7.5 | 109 | 22.85 | 807 | 24.37 | 861 | 132 | 175 | 72 | 2450 | 1800 | 1700 | 2600 | DN80 | |
| 8.5 | 123 | 22.73 | 802 | 24.23 | 856 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 19.88 | 702 | 18.95 | 669 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 16.51 | 583 | 16.82 | 594 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| DA-160(W) | 7.5 | 109 | 26.92 | 950 | 27.90 | 985 | 160 | 215 | 78 | 2650 | 1700 | 1850 | 3200 | DN80 | |
| 8.5 | 123 | 26.86 | 949 | 27.76 | 980 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 22.44 | 792 | 23.97 | 846 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 19.63 | 693 | 18.82 | 664 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| DA-185(W) | 7.5 | 109 | 28.89 | 1571 | 30.53 | 1078 | 185 | 250 | 78 | 2650 | 1700 | 1850 | 3300 | DN80 | |
| 8.5 | 123 | 28.84 | 1018 | 30.44 | 1075 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 25.11 | 886 | 27.46 | 970 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 22.08 | 780 | 23.69 | 836 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| DA-200(W) | 7.5 | 109 | 31.88 | 1126 | 30.53 | 1078 | 200 | 270 | 80 | 3000 | 1950 | 2030 | 4750 | DN100 | |
| 8.5 | 123 | 31.82 | 1124 | 30.44 | 1075 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 28.48 | 1006 | 30.22 | 1067 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 25.00 | 883 | 27.07 | 956 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| DA-220(W) | 7.5 | 109 | 36.20 | 1278 | 37.22 | 1314 | 220 | 300 | 80 | 3000 | 1950 | 2030 | 4800 | DN100 | |
| 8.5 | 123 | 36.15 | 1276 | 37.17 | 1312 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 31.71 | 1120 | 33.25 | 1174 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 28.48 | 1006 | 27.07 | 956 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| DA-250(W) | 7.5 | 109 | 43.31 | 1529 | 42.87 | 1514 | 250 | 350 | 80 | 3000 | 1950 | 2030 | 4850 | DN100 | |
| 8.5 | 123 | 43.24 | 1527 | 41.30 | 1458 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 36.03 | 1272 | 37.04 | 1308 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 31.55 | 1114 | 33.15 | 1170 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| DA-280(W) | 7.5 | 109 | 46.59 | 1645 | 47.16 | 1665 | 280 | 375 | 85 | 3700 | 2300 | 2450 | 5200 | DN125 | |
| 8.5 | 123 | 46.53 | 1643 | 45.64 | 1612 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 42.95 | 1516 | 42.56 | 1503 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 35.89 | 1267 | 36.95 | 1305 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| DA-315(W) | 7.5 | 109 | 53.16 | 1877 | 50.88 | 1797 | 315 | 425 | 85 | 3700 | 2300 | 2450 | 6000 | DN125 | |
| 8.5 | 123 | 52.63 | 1858 | 50.83 | 1795 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 43.05 | 1520 | 46.27 | 1634 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 42.93 | 1516 | 40.32 | 1424 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| DA-355(W) | 7.5 | 109 | 63.37 | 2238 | 58.12 | 2052 | 355 | 475 | 85 | 4500 | 2500 | 2450 | 7000 | DN125 | |
| 8.5 | 123 | 63.16 | 2230 | 56.54 | 1997 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 51.57 | 1821 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 43.79 | 1546 | 45.35 | 1601 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| DA-400(W) | 7.5 | 109 | 70.99 | 2507 | 61.72 | 2179 | 400 | 550 | 85 | 4500 | 2500 | 2450 | 8000 | DN125 | |
| 8.5 | 123 | 70.64 | 2494 | 59.72 | 2109 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 56.52 | 1996 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 46.34 | 1636 | 51.35 | 1813 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.
DENAIR Factory & Product Lines
DENAIR Exhibition
We carefully selected for you the classic case
Enhanced Energy Saving Air Compressor in Oman
Project Name: Sandblasting in Muscat, Oman.
Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.
Model No. & Qty: DA-75+ x 1.
Working Time: From June, 2016 till now
Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
.
Q3: Warranty terms of your air compressor machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the air compressor?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-21